Switching Regressions and Strategic Reasoning: Estimating Mixture Probabilities

William D. MacMillan, wmacmill@umich.edu Dept. of Political Science, University of Michigan

Why Mixture Models?

The major puzzle

Congress must delegate to agencies in order to achieve policy goals. The empirical record of this relationship is mixed; studies suggest that agencies are minimally controlled and unresponsive.

- When is political control of agencies manifest?
- Given that agencies hold private information, how do we describe the unobservable dimension of agencies?

Conditional manifest control of Congress

• From Shipan (2004), a model of delegation

Figure 1: Unicameral Model of Delegation

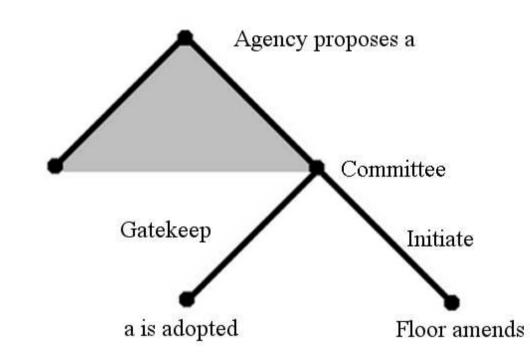


Figure 2: Sub game Perfect Equilibrium by Agency Ideology

Committee-Floor	Gatekeeping	Floor
C(F)	А	F
C	(F) C I	

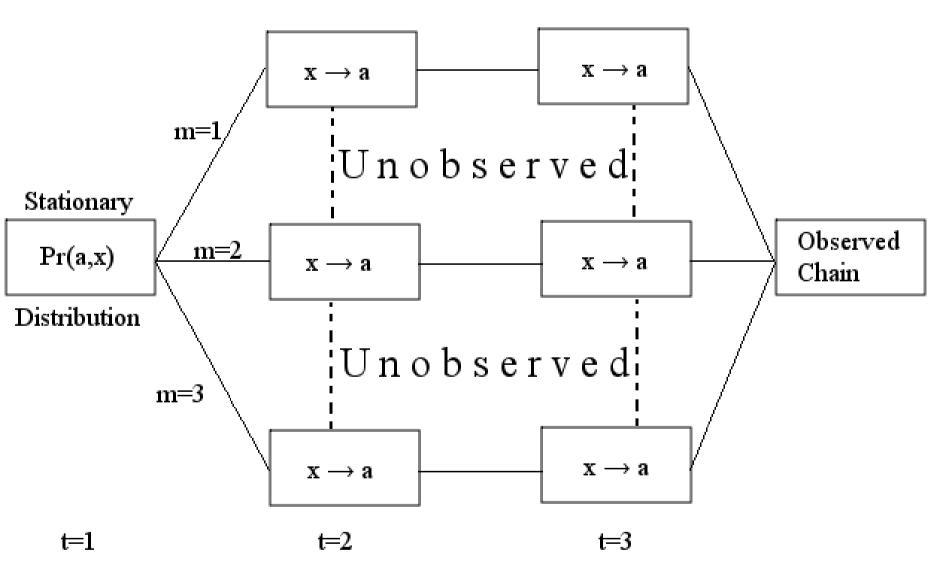
Unobserved Heterogeneity

Table 1: Marginal effect of shifts in ideology on outcomes, known Agency position

	ΔC	ΔA	ΔF
$\overline{A > C(F) > F}$	+	0	-
C(F) > A > F	0	+	0
C(F) > F > A	0	0	+

Why mixtures models?

- Allows for a flexible interactive structure
- Ideology measures (e.g. Nominate) have no counterpart for agencies


Regimes and Mixtures

- A basic model was first described by Goldfield and Quandt (1979), for two regimes (analogous to mixtures).
- Hamilton (1989) adapted Expectation Maximization algorithms to time-series problems, assuming a Markov process.
- This project implements a non-parametric mixture model with discrete actions from Kasahara and Shimotsu (Econometrica, 2009, hereafter KS).

Assumptions

- Number of mixtures, $M \ge 2$
- Discrete actions, A
- Covariates which inform the actions, $x_t = \xi, \xi = \{1, ..., M 1\}$
- Markov process, $x_t = f(x_{t-1}, a_{t-1})$
- Observations are panels, with N panels, observed $T \ge 3$ times

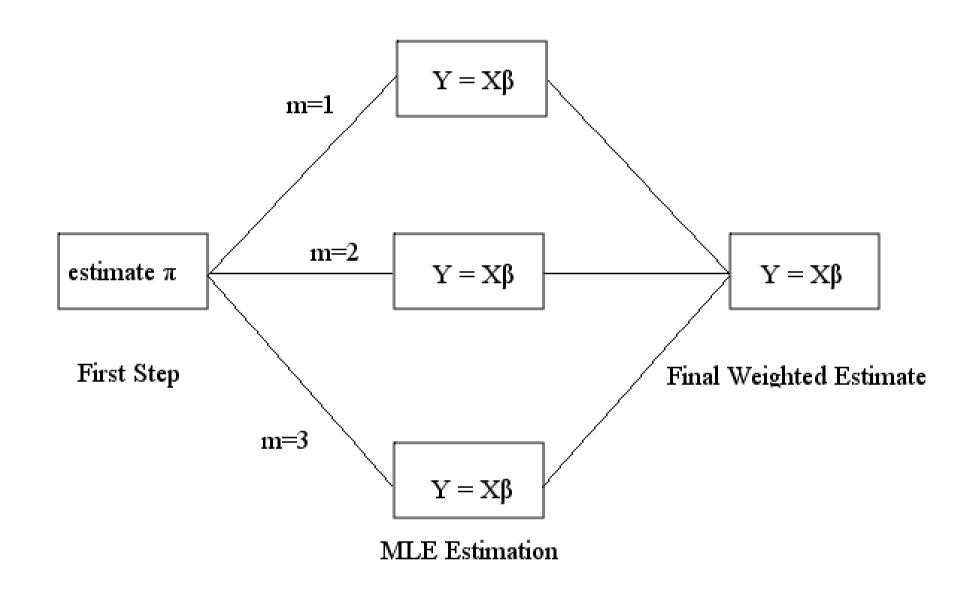
Figure 3: Discrete Dynamic Markov Process

Identification

The probability of any observed panel

$$P(\{a_t, x_t\}_{t=1}^T) = \sum_{m=1}^M \pi^m p^{*m}(x_1, a_1) \prod_{t=2}^T f(x_t)$$

Observable information (actions and covariates) is used to create


$$\tilde{P}(\{a_t, x_t\}_{t=1}^T) = \frac{P(\{a_t, x_t\}_{t=1}^T)}{\prod_{t=2}^T f(x_t | x_{t-1}, a_{t-1})},$$

and the differences in the actions due to the covariates are used to identify mixture probabilities.

How is it done?

Semi-parametric MLE

The KS non-parametric estimator for π^m can be used as weights for a mixture model which can be optimized with MLE.

Standard errors for π^m and β_m can be generated by means of non-parametric bootstrapping.

Take away points

- Intra-panel variation is a strong source of identification. – Adding additional agencies produces information efficiently.
- More variation is better. - Every combination of action and the covariates should be visited.
- Use this method to inform parametric or semi-parametric empirical models.
- Need new forms of data to accurately capture necessary variance.
- number of agencies must be studied quantitatively.

 $r_t | x_{t-1}, a_{t-1}) P^m(a_t | x_t)$

What does it mean?

 $MLE_{mixture} = \operatorname{argmax} ln(\pi_1 N(y - x\beta_1, \sigma_1^2) + \pi_2 N(y - x\beta_2, \sigma_2^2) + \pi_3 N(y - x\beta_3, \sigma_3^2))$

Figure 4: MLE Estimation Using π^m

– MLE is very easy after you have the π_m , and very hard with out it.

– Most studies of agencies currently focus on highly detailed records of a few agencies.

– Because the relationship between a few agencies and Congress varies relatively little, a larger

UNIVERSITY OF MICHIGAN